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Worst-case Formulations of Model Predictive Control for 
Systems with Bounded Parameters* 

J. H. LEEt and ZHENGHONG YU 

Diflerent min-max formulations of MPC for state-space systems with 
bounded parameters are examined from a closed-loop robustness 

viewpoint, and computationally attractive algorithms are proposed. 
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Abstrad-Two different predictive control formulations are 
developed based on minimization of the worst-case quadratic 
cost for systems with bounded parameters. The two 
formulations differ on the assumptions made about the future 
inputs in optimizing the current input: one assumes 
open-mop control, while the other considers closed-loop 
control. Their closed-loop properties such as asymptotic 
stability are examined. We then focus on a moving average 
model with an integrator, and derive computationally simpler 
suboptimal algorithms. 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Model predictive control (MPC), also known as 
receding horizon control (RHC) and generalized 
predictive control (GPC), has recently received 
much attention from both theoreticians and 
practitioners in diverse fields. Although different 
fields have adopted different names and favorite 
model forms, the underlying concept is the same: 
Solve a finite or infinite horizon open-loop 
optimal control problem at every sample time 
and set the control input according to the 
optimal profile until the next sample time. 
Updating states using measurements before each 
optimization results in feedback control. Motiva- 
tions for using this technique also differ from 
field to field. For example, in the process 
industries, the main attractive feature of MPC is 
its ability to handle time-domain constraints and 
model nonlinearities in multivariable control 
problems (Garcia et al., 1989). 

The main problem with the technique has 
been the lack of stability and robustness 
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guarantees. The stability problem has been 
solved to a satisfactory degree in several recent 
papers (Keerthi and Gilbert, 1988; Mayne and 
Michalska, 1990; Rawlings and Muske, 1993). 
The robustness of model predictive controllers 
has also been analyzed using the structured 
singular value theory, to derive tuning rules for 
observer and regulator parameters (Lee and Yu, 
1994). However, this type of analysis is limited 
mostly to unconstrained, linear systems. 

One promising way to utilize parametric 
uncertainty information within the MPC frame- 
work is to base the optimization on a whole set 
of future predictions defined by possible 
parameter values. This notion has been explored 
by several researchers in various contexts. For 
example, one can model the uncertain system 
parameters as stochastic variables to formulate a 
predictive control law that minimizes the 
expected cost for some future horizon (Lee and 
Cooley, 1995). Another possibility is to model 
the uncertainty using deterministic bounds in the 
parameter space and minimize the ‘worst-case’ 
cost. The latter approach has been referred to as 
‘min-max MPC’ in the literature, and is the focus 
of this paper. 

One of the early works on min-max MPC was 
by Campo and Morari (1987) who applied the 
idea of worst-case error minimization to finite 
impulse response (FIR) models with m-norm 
bounded affine perturbations. For this particular 
model type, they showed that the problem of 
finding an input sequence minimizing the 
worst-case tracking error can be solved via linear 
programming (LP). More recently, Lau et al. 
(1991) showed that quadratic minimization of 
the worst-case error for an ellipsoidal set of FIR 
coefficients is convex. Their motivation for using 
ellipsoidal parameter bounds was that such 
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bounds arise naturally when noise and para- 
meters are assumed to be Gaussian variables 
during identification (Goodwin et al., 1990; 
Kosut et al., 1990). More recently, Veres and 
Norton (1993) presented an adaptive method in 
which parameter bounds are updated recursively 
and open-loop worst-case error is minimized at 
each time step. They also proposed a way to 
relax the tracking error minimization require- 
ment and to inject test input signals in order to 
tighten the parameter bounds. Although simplis- 
tic examples presented in these papers indicate 
the potentials of the min-max approach, none of 
the algorithms have been tested extensively, 
especially as means of feedback control. 

A noteworthy point about the min-max MPC 
techniques that have appeared in the literature 
thus far is that, following the convention of 
regular MPC techniques, they all assume 
open-loop control in the optimization. In other 
words, the formulations do not account for the 
fact that only the first element of the computed 
input sequence is implemented and the future 
inputs are determined from new optimizations 
performed after feedback updates. This inconsis- 
tency is insignificant for the single-model-based 
formulation (either because the future is entirely 
deterministic or because separation holds), but it 
can lead to poor performance of min-max MPC. 
Realization of this has led to efforts to modify 
the min-max formulation such that it is robust in 
the closed-loop sense. For example, Zheng and 
Morari (1993) have presented an m-norm based 
min-max formulation for a special class of linear, 
time-varying systems and have proved robust 
stability under certain choices of tuning 
parameters. 

The focus of the present paper is the 
development of min-max MPC formulations 
from the viewpoint of closed-loop control. First, 
we present open-loop and closed-loop formula- 
tions of min-max MPC for general state-space 
systems with time-invariant or time-varying 
parametric uncertainties. We then examine the 
closed-loop properties of these formulations. We 
demonstrate that min-max MPC based on the 
open-loop control assumption can give poor 
closed-loop performance, especially when uncer- 
tainties are assumed to be time-invariant in the 
formulation. This is true even when the 
underlying system is time-invariant. When the 
uncertainty is allowed to vary from one time step 
to next in the prediction, the open-loop 
formulation gives robust, but cautious, control. 
The closed-loop formulation, presented only for 
the time-varying case, duly considers the 
recurrent nature of the optimization. The 
resulting problem, however, is a dynamic 

program, which must be solved numerically. We 
examine the robust stability of different formula- 
tions under infinite horizon. 

We then narrow the scope to FIR systems with 
integrating-type disturbances. As mentioned, the 
closed-loop formulation leads to a dynamic 
program, which must be solved numerically. 
Numerical solution requires discretization of 
states, and therefore suffers from the ‘curse of 
dimensionality’. The technique is impractical for 
all but small-size problems. Hence, we focus on 
the open-loop formulation (with time-varying 
uncertianty) and show that the resulting 
optimization is convex. Next, we restrict the 
parameter set to ellipsoids and make further 
approximations to interpret the ‘worst-case’ 
objective as a squared sum of nominal error plus 
an input penalty term. The computational 
requirement of this suboptimal algorithm is 
comparable to that of the conventional MPC. 
We present several examples to compare the 
performance of the suboptimal algorithms with 
numerical solutions of the dynamic programs. 

2. MIN-MAX FORMULATIONS OF PREDICTIVE 
CONTROL 

2.1. Problem definition 
Throughout this section, we will base our 

discussion on the following state-space system: 

where z is the state vector and LJ is the 
manipulated input vector. 6 is an uncertain 
vector that parametrizes the system matrices and 
can be constant or time-varying. For simplicity, 
we assume that z is measured perfectly at each 
time. Bounded disturbance and noise signals are 
not considered in this paper for the sake of 
simplicity, but can be easily incorporated into 
the resuits we present subsequently. 

We are interested in minimizing the cost 

by using feedback control of the form uk =f(&), 
where f(e) may be defined either explicitly or 
implicitly through an optimization problem. In 
the above, it is assumed that Q 2 0 and R > 0. 
The following constraints are imposed in 
achieving the above objective: 

vkEClr, (3) 

(4) 
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where Y’” and SY are compact, convex sets that 
include the origin. The input constraints 
represent physical limits of actuators, while the 
state constraints can arise from performance and 
safety considerations. 

2.2. Characterization of parameter vector 
The parameter vector sequence {ak} is 

unknown, but is assumed to belong to some 
compact set. We consider both the time- 
invariant and time-varying cases. 

Time-invariant case. In the time-invariant 
case, 19~ = I?, Vk and 

I9 E 0, (5) 

where 0 is a compact set. The choice of 
parameter sets studied in the literature has been 
driven mainly by how convenient they are for 
developing efficient identification and control 
algorithms. The following two choices have been 
most popular. 

(9 

(ii) 

Ellipsoidal set: The compact set can be 
chosen to be an ellipsoid, which may be 
expressed as 

where 11 . [I2 denotes the Euclidean norm. 
The nominal parameter vector 8 represents 
the center of the ellipsoid. W E %!“‘“” 
specifies the orientation and size of the 
ellipsoid. Because parameter estimation 
under the Gaussian noise assumption natu- 
rally yields ellipsoidal bounds, this uncer- 
tainty description has been used by many 
researchers (Goodwin et al., 1990; Kosut et 
al., 1990; Lau et al., 1991). 

Axis-aligned polyhedron: In this case, the 
Euclidean norm is replaced by the x-norm. 
The axis-aligned polyhedron description has 
also been adopted by many researchers, 
including Campo and Morari (1987), Zheng 
and Morari (1993), and Genceli and 
Nikolaou (1993). 

Ellipsoidal Model Set 

Figure 1 shows both types of uncertainty 
description for a two-dimensional case. Methods 
for obtaining and updating such bounds from 
input-output data will not be discussed here, but 
can be found in the literature (Milanese and 
Belforte, 1982; Fogel and Huang, 1982; Belforte 
et al., 1990). 

Time-varying case. In the time-varying case, 
we may assume 

6, E 0 Vk, (7) 

or, more generally, 

7Yk E Ok. (8) 

In the above, each element of {19~} is assumed to 
be independent of the other elements, and, 
therefore, it can be a conservative description. 
More generally, one can use 

I3 kfl = @‘6k + vk, (9) 

where r]k is a sequence the elements of which 
belong to a compact set. We can express the 
above as 8k E Ok where Ok evolves from 0, 
according to (9). However, this representation is 
conservative, as elements of the sequence 6, are 
not completely independent, i.e. there are 
sequences that satisfy fik E 0, but are not 
possible parameter sequences. 

2.3. Open-loop formulation 
Conventional MPC (which requires 8k to be 

completely deterministic) is formulated as the 
computation of an open-loop input trajectory 
minimizing the quadratic cost defined for a 
fixed-size, moving horizon at each sample time. 
At t = k, MPC solves 

(lo) 

Polyhedron Model Set 
/ 

Fig. 1. Geometric interpretation of ellipsoidal and polyhedron model sets for the two-dimensional case. 
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with the constraints 

and 

Xk+/E%, I=1 )..., p, (11) 

u k+jE v, j=o,. , . ,4-l, (12) 

U k+;=o, i=q ,..., p-1, (13) 

xk+/ = (fi A(&+;))& 
i=O 

+ ‘2 ( ‘f-i A(~k+i))B(%+j)u,+j, (14) 
I=0 i=j+1 

qk = [d, d+l, . . . , d+q-,]T (15) 

In the above, q sp; hence, the control-input 
horizon can be set smaller than the prediction 
horizon. The actual control input is determined 

by 

uk =uf’ [I 0 . . . o] 

p-1 
d+pQpxk+p + 2 Xi!+jQxk+l 

/=l 
q-1 

+ c U:+jRUk+j 
j=O 

subject to constraints (ll)-(15)] (16) 

As U? depends only on zk, the above is a state 
feedback control law, defined implicitly through 
the optimization problem. MPC belongs to a 
class of optimal-control techniques called open- 
loop optimal-feedback control (OLOFC), as the 
open-loop optimal control computation is re- 
peated with feedback update. It is natural to 
apply the same train of logic in developing a 
min-max predictive control algorithm. 

Time-invariant parameter case. In this case, 

A(ak+i) =A@) and B(fik+i) = B(6) for all i 
and k. We assume that 6 E 0. The open-loop 
input sequence that minimizes the worst-case 
cost can be computed through the following 
optimization: 

I 

+ ‘2 ULjRUk+j ) (17) 
j=O 

with the constraints 

Xk+,Eg, I=1 ,..., p V8E@, (18) 

Uktj E vj j=O,...,q-1, 

&+j=O, i=l)..., p-1, 

and the prediction equation 

(19) 

(20) 

/El 
Xk+[=A'(e)Zk + C A'-'-'(8)B(8)Uk+j (21) 

j=O 

As before, the actual input uk is set equal to 
the optimal value of uk at each sample time. The 
resulting feedback control will be referred to as 
open-loop worst-case optimal-feedback control 
(OLWOFC). Open-loop minimization of the 
worst-case error, the idea used in formulating 
the above, represents the essence of most 
min-max MPC techniques that have appeared in 
the literature (Camp0 and Morari, 1987; Lau et 
al., 1991; Veres and Norton, 1993). 

There are two very important ramifications of 
the open-loop control assumption in the above 
formulation. The first is that update of the 
parameter bound 0 is not considered. For 
time-invariant systems, state measurements pro- 
vide information about the constant parameter 
vector 6 that can be used to reduce the size of 
the set 0. This is true even when bounded 
disturbance and noise are present. There are 
algorithms in the literature that enable the 
updating of the feasible parameter set in the 
presence of bounded disturbances (see Milanese 
and Belforte, 1982; Fogel and Huang, 1982; 
Belforte et al., 1990). However, the problem is 
far more complex than simple updating of the 
feasible parameter set at each time step. A more 
subtle aspect is that the choice of control input 
affects the feasible parameter set for future time 
steps. In the open-loop control computation, 
however, this relationship cannot be accounted 
for in the optimization (or it is not meaningful to 
do so), because the future inputs are assumed to 
be computed independently of future measure- 
ments. The second aspect is that the formulation 
fails to address the fact that only the first 
element of the optimal input trajectory is 
implemented and the whole min-max optimiza- 
tion is repeated at the next time step with a 
feedback update. In the subsequent optimiza- 
tion, the worst-case parameter values may 
change because of the feedback update. This can 
have some undesirable consequences. We will 
demonstrate this point through a simple example 
later in this section. 

Time-varying parameter case. In the case 
where the parameter sequence is modeled as an 
independently varying bounded sequence as in 
(7) the open-loop minimization of the worst- 
case cost becomes 

min max 
uu, [e, ,_.., ek+,_l]eOx...xO 

X:+pQpXk fp 

p-1 q--l 

+ C XZ+IQXk+I + C Ul+jRUk+j 7 (22) 
I=1 j=O I 



Worst-case formulations of MPC 767 

with the constraints 

Xk+,EZ, l=l,..., p 

vh.. . , ok+,-, ] E 0 x . . . x 0, (23) 

u~+~EY, j=O ,..., q-l, (24) 

uk+i = 0, i=l,...,p-1, (25) 

and the prediction equation 

xk+l = (fi A(e,+,))Zk 
i=o 

+ ‘2 ( ‘fi A(ek+i))B(ek+j)Uk+,. (26) 
,=n ;=]+I 

To distinguish the above from the previous 
formulation, which was based on the constant 
parameter assumption, we refer to the above as 
OLWOFC-II. This distinction is necessary 
because there is an incentive to apply the above 
even to time-invariant systems. One of the 
incentives is that OLWOFC-II tends to be more 
robust than OLWOFC, as the parameters are 
allowed to take on differnet values at each time 
step. For instance, we can prove robust stability 
of OLWOFC-II under certain conditions (see 
Section 2.6). However, this formulation suffers 
from the same drawback as the first, in that it 
does not consider the benefit of future 
measurements in the prediction. Even when the 
parameters do not have time correlation, 
future measurements still contain information 
about the past parameter values that can be 
useful for control computation. A consequence is 
that the resulting closed-loop response can be 
more sluggish than necessary. 

For the more general case of (9), a 
conservative formulation is 

p - I 4-l 

+ E XZ+lQXk+, f C Ul+jRUk+j ) (27) 
/=I j=O 

with (23)-(26). In addition to being an 
open-loop formulation, it is conservative because 
time correlations in the parameters are ignored. 
On the other hand, entering the parameter 
model of (9) directly into the optimization can 
lead to the same problem as in the time-invariant 
case. 

2.4. Closed-loop formulation 
In the foregoing discussion, we have stated the 

need to consider the recurrent nature of the 
optimization in the formulation. Hence, the 
focus of this section is on formulating the 
worst-case optimal control from a closed-loop 

standpoint. We will start with the time-varying 
parameter case. 

Time-varying parameter case. Let us consider 
the case where 8k E OVk. Hence, we do not 
consider any correlation among the parameter 
deviations at different times. We consider the 
same finite-horizon-cost-minimization problem 
as before. This time, however, we consider 
closed-loop control in the prediction to derive 
the worst-case optimal state feedback law. For 
this, we apply Bellman’s principle of optimality 
(Bellman, 1961) and use dynamic programming 
(as in the derivation of the LQ regulator). 

For the finite-horizon problem which ends at 
t = k + p, the cost for the min-max optimization 
at t = k +p - 1 for given xk+,,_, is 

v:li_,(xk+,_,) = min max {X:+&Jktp 
lLX+,‘?,ttie,+,, ,eO 

with 

+ U:+p~,RUk+p-,), (28) 

X k+p=A(~k+pdk+p~, + wk+l’-,)Uk+I’-, (29) 

and the constraint 

xk+/, E % V8,+,_, E 0. (30) 

Similarly, at t = k +p - 2, the cost can be stated 
as 

= min max {xz 
1(1.,’ *E 7’63, *,,-zEO 

+,I-,QXk+/,p, 

+ d+p-&h+p-z + vf:;-,(xk+p~,)}, (31) 

with 

xk+,>-l =A(%+,,-2)Xk+p-2 + f@k+p-Z)Uk+p-2 

(32) 

and the constraint 

xk+,,-, E ‘?? V&+2 E 0. (33) 

VfT$-, depends on Xk+p_,. which in turn 
depends on xk_tp_2, the IIIinimiZer uk+p_2, and 
the maximizer 8k+,_, through (32). Applying 
this idea successively, we arrive at the following 
expression for the min-max cost t = k: 

+ v:::?(xk+,)), (34) 

xk+l =A(ok)Zk + B(ok)Uk, (35) 

x&+, E 2r vek E 0, (36) 
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where V,“~+,+,) is computed recursively from 
i =p to i =2 through 

+ UT+i-lRUk+i-l + V,“zP(x,+;)>j (37) 

x k+i = A(ek+i-l)Xk+i-l + B(Ok+i-l)Uk+i-l, (38) 

Xk+j E 2 vek+f_l E 0, (39) 

with the starting condition V,“z$,+P) = 0 and 
Q, =. . . = Q,_, = Q. When t& is set to the 
optimal value of uk from (34) at every sample 
time, we name the resulting feedback control 
closed-loop worst-case optimal receding horizon 
control (CLWORHC). It is a noteworthy point 
that the computation of the worst-case optimal 
feedback control policy for a linear system with 
a convex parameter set is nonlinear and 
nonconvex. 

Extension to time-invariant/time-correlated 
parameter case. In the time-invariant case (5), 
the closed-loop formulation is further compli- 
cated by the fact that input decisions affect the 
feasible parameter sets for future time steps in a 
complex, nonlinear manner. Accounting for this 
in the control computation offers certain 
advantages (such as the active probing trait 
found in dual control (see Feldbaum, 1965)) but 
doing so rigorously makes the control formula- 
tion computation unwieldy. For instance, the 
state vector must be extended to include 
information necessary to define the feasible 
parameter set (this is referred to as the 
‘hyperstate’ in the adaptive control literature) 
and the effect of the input on those extended 
states must be quantified. 

If we assume in the prediction that the 
parameter set will not be updated in the future 
time instances, we can go through the same 
cost-to-go calculation as before to arrive at the 
same exact optimization of (34)-(39) (where 0 is 
the feasible parameter set computed at t = k). 
However, the fact that we obtain the same 
algorithm as when the uncertainty is assumed to 
vary from one time step to next in an arbitrary 
manner clearly indicates the conservativeness. 
The conservativeness arises from the fact that we 
did not consider the parameter bound update in 
the control computation. The same observation 
holds for the more general time-correlated case 

(9). 
Numerical solution procedure. CLWORHC, 

given by (34)-(39), involves a sequence of 
min-max optimizations formulated as a dynamic 
program. Since the min-max optimization at 
each stage does not yield an analytical solution, 

it must be solved numerically. The numerical 
procedure involves discretizing the states at each 
stage and computing and storing the min-max 
costs for all combinations of the discretized 
states. The procedure for doing this with 
constraints Uk+q = . . . = uk+p_l = 0 is given 
below. 

Step 1. Discretize the State vector xk+q_] and 
compute the following cost-to-go for each 
combination of the discrete states: 

v,“:;(xk+,) = max 
ek+q,...,ektp-,EQ 

with 
(40) 

X k+i = (iii A(Ok+j])Xk+q, i = 4 + 1, . . . , P. 
i=4 

(41) 

If 9 =p, skip this step and set V:Iz = 0. 

Step 2. Set 1= q. 

Step 3. Discretize the state vector x,&-l. 

Step 4. For each combination of discretized 
states, compute and store the cost for 

min max {x:+rQrG+, 
U,,+,_IE-v-e~+,&,EQ 

+ &--I&+,--I + v,kmk+& (d2) 

with 

X k+/ =A(ok+I-&k+l-I + wkkcl-&k+l-l, (43) 

xk+/ E if, vok+l_l E 0. (44) 

If 1 = 1, also store the optimal Vahe for t&+/-l. 

Step 5. Set I= I - 1. If 1 = 0, stop. If not, go back 
to Step 3. 

Remarks. 

(9 

(ii) 

In Steps 1 and 3, the range of discretization 
should be chosen to reflect the constraints 
as well as the region of feasible operation. 
One can also include performance con- 
siderations. For instance, the allowed region 
in the state space can be made gradually 
smaller to reflect required speed of 
convergence. 

In Step 4, I’$~&+,) is the min-max cost 
from the previous iteration, which should be 
in storage for discrete points of xk+,. Since 
xk+/ is determined uniquely by Xk+/_,, 

Uktl-I7 and ok+,-l, Vzzf’ can be computed 
for given values of Xk+,-l, Uk+/_,, and 
6ik+&1, by interpolating the stored values. 
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(iii) 

(iv) 

In Step 4, it is required to find an input 
uk+/__l E 7 that keeps xk+[ within Z for all 
0k+l_l E 0. If this is not possible, it implies 
that the state constraint is not feasible for 
the particular value of x&&l. In this case, a 
‘very large’ cost should be assigned to the 
value. This way, if the min-max cost at the 
end is declared ‘very large’, we know that 
constraint violation is inevitable for the 
particular value of zk. 

What results from the above is a feedback 
law uk =f(~), which is given in a table 
look-up form. One can use interpolation 
functions to construct an explicit function, if 
desired. 

Undoubtedly, the above procedure is numeri- 
cally demanding and suffers from the curse of 
dimensionality. For example, if there are d states 
and each state is discretized with u points, one 
needs to perform the min-max optimization and 
store the costs for ud points. This can be a 
formidable task for large v and d. In addition, 
each min-max optimization is nonconvex in 
general. The complexity of optimization in- 
creases only linearly with the prediction horizon, 
which is a feature of dynamic programming. 
Even though the calculation can be performed 
off-line, the procedure is applicable only to a 
system of small dimension. Nevertheless, it is of 
interest for us to solve simple problems 
numerically in order to gain insights into 
properties of CLWORHC and assess the 
performances of other suboptimal algorithms, 

2.5. Example 
Example 1: SISO integrating system with 

unknown delay. We will demonstrate the 
closed-loop properties of different formulations 
through a simple example. For this, we consider 
the following integrating system with an 
unknown delay: 

Yk = yk-1 + uk-6, 6 E (1, 2, 3). (45) 

The above can be converted into the following 
state-space system: 

zk+,=[ i I #k+[ ,#k, 

Yk = [o 0 l]Zk, 

~~[~~]~{[~],[~],[811. 

Note that the above is in the form of (1). 

(46) 

(47) 

(48) 

We simulated the closed-loop responses of 
different min-max predictive control algorithms 
applied to the above system. In the simulation, 
we assumed that z0 = [0 0 llT (which corres- 
ponds to a step disturbance occuring in the 
output at t = 0) and S for the real plant was 2 
(6 = [0 1 01). The parameters used for all 
control computations were p = 3, q = 3, Q = 
Q,, = diag (0, 0, l} and R = 0.0001. 

First, Figure 2 shows the response obtained by 
applying the OLWOFC (formulated with time- 
invariant uncertainty as in (17)-(21)). The 
simulation shows an oscillatory output response 
that is inferior to what can be achieved with a 
well-tuned PID controller. This poor perfor- 
mance can be attributed to the fact that the 
worst-case parameter value keeps changing from 
one time step to next due to the feedback. 
Figure 2(b) shows the simulated response of the 
output when we apply the CLWORHC. Here, 
we solved the dynamic program (34)-(39) to 
construct a feedback law and applied it to the 
plant. The simulation shows clear improvement 
in the output response when compared to that 
obtained with OLWOFC. Figure 2(b) also shows 
the simulation result obtained with OLWOFC-II 
(which is formulated with time-varying uncer- 
tainty of (22)-(26)). As we predicted, the 
response is farily good (better than OLWOFC, 
but slightly worst than CLWORHC). 

2.6. Robust stability of infinite-horizon min-max 
MPCs 

In this section, we prove robust stability of 
the min-max algorithms for the infinite-horizon 
case. The proof is based on the idea that the 
optimal infinite-horizon cost decreases monoton- 
ically with time. The same idea has also been 
used by others (e.g. Mayne and Michaska, 1990; 
Rawlings and Muske, 1993) to prove the 
attractivity of various linear and nonlinear MPC 
algorithms. The value of the result is twofold: 
first, it provides further justification for the 
algorithms; and, secondly, there are certain types 
of system (e.g. FIR models) for which an 
infinite-horizon problem can be directly con- 
verted into a finite-horizon problem. 

Theorem 1. Robust stability of infinite-horizon 
CLWORHC. Let fx(zk) denote the solution of 
the optimization (34)-(39) with p = x for given 
zk with Q > 0 and R > 0. Under the feedback law 
uk =fx(zk), the plant given by (1) and (7) is 
attractive for all possible parameter sequences 
over the set for which the infinite-horizon cost 
function for the optimization is bounded. In 
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Fig. 2. Simulation of different min-max MPCs applied to the delay system of Example 1: (a) OLWOFC; (b) CLWORHC (----), 
OLWOFC-II (--). 

other words, zk -+ 0 and uk + 0 as k -+ x, for z. 
for which V;(z,,) < x. 

Proofi We will leave out the state constraints for 
simplicity. The proof with state constraints is 
exactly the same (as long as they are feasible). 
Note that, with constraints that Uk+<, =. . . = 
ul+,,-, = 0, we can rewrite (34) as the following 
nested optimization: 

Vf+” = min max min max 
,,ktI &EQL(i+,tI ek+,Eo 

. min max 
llir,, ,t I‘L91*,,EO, ..Br+,,_,tQ 

,I - I 

X:+pQIJk +,I + 2 X:+,QXk+, 
/=I 

y I 

+ c Ll;r+,RKk+i , 
I:0 I (49) 

where 

x/c+/ = (i_i A(%+,+ 
i=o 

l=l,. .,p. 

Now, let us define VT as: 

Vl; = min max min max . min max 
,,1t ?“O~EQUI_,E 1’8,_,t@ 111+,, it i’@,-,, ,EQ. 

We claim that 

v;+, - v; 5 -(Z;QZk + V$Vk). (52) 

This is easy to show. Let L$ and Q,$ be the 
arguments of the outermost optimization in the 
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above. Then, 

Vl: = min max min max . . . min max 
l~~E~e~Eer~,+,E’Ve,+,EQ Uki ,,-( E‘VtJx+y_,Eo. 

= max min max . . . min max 
e~E@UC+,EYe*+,EQ l++4_, E y e,+,_, =O ,... 

with uk = Uf, 

2 min max . . . min max 
U*+,E.Vek+lEQ Uk+u_,E~ ek+u-,co. 

with t.‘k = uk* and 0, = tiQk since 8Qk E 0, 

= min max . . . min max 
lir+,evek+,sO Ldk+q-, E v e*+_, Ee. 

+ Zl+,QZk+, + V%Jkr 

with xk+l = (E A(ek+i))zk+, 
i=l 

1=2,...,p, 

SinCe vk = U,$ and &.+I = A(6,)zk 

+ B(8kk)vk, 

2 min max . . min max min max 
,c*+,t‘~ek+l~~ u~+,,~lE.Ve,+,_,EQU*+r,E.~eX+yEO ,... 

@+d&+, j=, + 2 UZ+jRUk+j ) 
+ zl+, QZk+l + V%VI,, 

since Uktq = 0 E 7, 

= G+, + Zf+,QZk+, + V:RVI,. 

This means 

(56) 

v;r v;,, + Z:+,Qzk+, f tJ;rRuk, (57) 

which can be rearranged into (52). The 
inequality (52) implies that V; is a converging 
sequence, and zk and uk InUSt vanish as k+ co, 
implying the attractivity. 

Remarks. 

(i) The attra t’ ‘t c iv1 y is proven only over the set 
of z. for which V,” < m. For open-loop stable 
systems, global attractivity can be 
established. 

(ii) As mentioned above, the same proof holds 
without modification when the output 
constraints are present, as long as they are 
feasible. If this is not the case, the 
constraints must be relaxed in some way. 
For example, one can remove the con- 
straints one by one, starting from the initial 
time, until they become feasible (as 
suggested by Rawlings and Muske, 1993). 
Another way is to include a quadratic term 
that penalizes the extent of constraint 
violation in the objective function (see 
Zheng and Morari, 1994). The stability 
proof works, with some modifications, in 
both cases. 

Corollary 1. Robust stability of infinite horizon 
OLWOFC-II. Let f&k) RpreSeUt the solution 
of the optimization (22)-(26) for given zk with 
Q > 0 and R > 0 with p = a. With the feedback 
law vk =fx(zk), the plant given by (1) and (7) is 
attractive for all possible parameter sequences 
over the set for which the infinite horizon cost 
function for the optimization is bounded. 

Proof: Same as the proof of Theorem 1. 

Remarks. 

6) The corollary holds only when the infinite 
horizon cost for the open-loop optimization 
is bounded. This means that there cannot be 
any uncertainty associated with unstable 
modes in the system. 

(ii) The infinite horizon algorithm can be 
implemented, in certain cases, like the FIR 
system. See Section 3.2. 

(iii) Note that the proof does not work if we 
require the parameter vector to be time- 
invariant in the formulation (as in 
OLWOFC). This is because the worst-case 
parameter for the optimization at the next 
time step may change because of the 
feedback. We can no longer show that the 
cost is monotonically decreasing. 

2.7. Summary 
For systems with time-varying parametric 

uncertainty (as defined by (7)) both 
CLWORHC and OLWOFC-II can be used. 
CLWORHC gives the worst-case optimal feed- 
back control (for the finite-horizon problem 
defined). OLWOFC-II, on the other hand, 
neglects the benefit of the future measurements 
and, therefore, is suboptimal. However, the 
open-loop formulation still provides good 
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robustness as demonstrated through the example 
and Corollary 1. 

For systems with time-invariant or time- 
correlated parametric uncertainties (as in (5) or 
(9)), the open-loop formulation based on the 
given uncertainty description can yield poor 
results. This is mainly because the future 
feedback can change the worst-case parameter 
values. In addition, the benefits of reduced 
uncertainty drawn from future parameter upd- 
ates cannot be reflected in the open-loop 
formulation. Rigorous closed-loop formulation, 
on the other hand, is very difficult in this case, 
owing to the complex relationship between the 
states, inputs, parameters, and feasible para- 
meter set for future times. The best option is to 
neglect the future updates of the feasible 
parameter set in the prediction. Then we obtain 
the same closed-loop formulation as when the 
uncertainty is allowed to vary with time. This 
approximation generally results in robust, but 
conservative, control. The conservatism is due to 
the fact that future updates of the parameter set 
are not considered in the prediction. One can 
also apply OLWOFC-II (the open-loop formula- 
tion with time-varying uncertainty), but at the 
expense of a further increase in conservatism. 
Finally, although ignored in the prediction, 
updating of the parameter set can still be 
performed at each time step. 

3. SUBOPTIMAL ALGORITHMS 

As the dynamic programming solution is 
computationally prohibitive for large systems, it 
is of practical interest to develop suboptimal, but 
more computationally amenable, algorithms. In 
this section, we restrict our discussion to 
moving-average (MA) systems with an integ- 
rator. First, we show that, when the parameter 
set is convex, the optimization problem for 
OLWOFC-II is convex and, therefore, can 
potentially be solved on-line. Next, we restrict 
the parameter set to ellipsoids and approximate 
the objective function to arrive at a function 
similar to the one used in the conventional MPC 
(i.e. nominal error plus quadratic input penalty 
terms). This suboptimal algorithm has a nice 
interpretation of penalizing various orthogonal 
linear combinations of the input sequence 
according to the magnitudes of the respective 
error bounds in the parameter space. 

3.1. Model description 
In this section, we will mainly consider the 

following SISO MA system with an integrator: 

y, =y,-I + fi:-,vk-1, (58) 

with 
b-1 = [V&l,. . ., k71T, (59) 
6$_, = [h, ) . . . ) h,]. (60) 

In the above, yk is the output at time k, V,_, is 
the vector containing the n past input sequence, 
and 19 is the parameter vector containing n MA 
coefficients. We assume that {ak} is, in general, 
an independent sequence the elements of which 
belong to a convex set 0 for all k. Hence, it 
includes the time-invariant parameter case as a 
special case. The model form of (58) is used in 
many popular predictive control algorithms like 
dynamic matrix control (Cutler and Ramaker, 
1980) to model open-loop stable systems with a 
finite impulse response. The integrator is added 
to account for ‘persistent-type’ errors in the 
OUtpUt. Hence, for stable Systems, uk represents 
the incremental change in the actuator position at 
t = k. Note that we can put the input-output 
system (58) into the standard state-space form 
as follows: 

h 2.k 

0 

1 

. . . h n,k 
. . . 

0 

1 uk 

We are interested in minimizing 
x 

c y'k + Au:. 
k=O 

The minimization is subject to the following 
constraint: 

(63) 

where U,in i 0 and u,,, > 0. In addition to the 
above, one may have the constraint 

k 

(64) 
i=o 

The constraint expresses the actuator limit, as u 
represents the incremental change in the 
actuator position. The above constraints will be 
assumed in the subsequently presented formula- 
tions, even though we do not, write them out 
explicitly every time. 

Although we work with the above specific 
model form, the results presented subsequently 
can be extended straightforwardly to more 
general cases of (i) autoregressive moving 
average (ARMA) systems with unknown, but 
bounded, moving average coefficients, and (ii) 
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state-space systems with an input gain matrix 
parameterized through an unknown, bounded 
vector. 

3.2. OLWOFC as convex optimization 
We start from the optimization for 

CLWORHC applied to the system (58): 

min max min max . . . min max 
LIP e,~o z++, e&+,so u~+~_, [e,,, _,,..., e,+,_,]sox...xo 

where 

with 

Y&+/l&= yk + i ez+j-luk+j-1, 
j=l 

uk+j-I = [fik+,-1, . . . > E&+j-nlT, (67) 

Ukti = 

- I 

V &+ip for i < 0, 

Uk+r, for Osi<q, (68) 

0, for i 2 q, 

and constraints (63) and (64). The above 
optimization is nonconvex and, therefore, is very 
difficult to solve. 

As an alternative, we may consider solving the 
following optimizaion in OLWOFC-II: 

(69) 

where ir, denotes the feasible set for %& (defined 
by constraints (63) and (64)). Recall the result 
from the previous section that replacing (65) 
with (69) increases conservatism, but the 
robustness is retained. A major benefit is that 
the optimization given in (69) is convex. This is 
easy to see. First, note that {x7=‘=, jj’,++ + 

a convex functional of 
because it contains only 

linear terms. It is also convex in 
%& for the same reason. This has two 
consequences. First, the maximum always lies on 
the boundary of 0 X . . . X 0. If 0 is a polytope, 
the maximum occurs at one of the vertices 
of 0 X . . . X 0. Secondly, maxe,,e ,,,_, e,,+,,_,se 
{EYE1 YE++ + ci4_;1 AZ+,) is a convex function of 
%& as the maximum of the convex functionals is 
also convex. Although convex, the objective 
function (69) is not necessarily differentiable, 
and standard gradient-based algorithms cannot 
be applied in finding optimal a&. See Boyd and 
Barratt (1991) for the types of algorithm that 
can be applied to minimization of non- 
differentiable, but convex, functionals. In addi- 
tion, note that the constraints on %& (from (63) 
and (64)) are simply linear constraints. This 
means that a local minimum is also the global 
minimum. The convexity provides some flexibi- 
lity in terms of implementation. For instance, 

instead of solving the optimization off-line for all 
possible discretized values of states (which leads 
to the curse of dimensionality and the need for 
interpolation), one can solve it on-line at each 
sample time for particular value of z&, as is done 
in conventional MPC implementation. 

Corollary 1 states that robust stability can be 
guaranteed for infinite-horizon OLWOFC-II. 
However, the infinite-horizon algorithm cannot 
be implemented directly as the cost is un- 
bounded due to the presence of the integrator. 
For the FIR system, the output settles to a 
constant value at k + q + n - 1 with the restric- 
tion of &+q+j = 0 for i 2 0. Hence, one could 
approximate the infinite-horizon MPC with 

min max 
dakEfiI( [e,.....e, +<,+,,_*].ox...xo 

k+q+n-2 q-1 

d+q+n-l/k y:+llk + C AUZ+j j 
j=O 

(70) 

for which y >>max{l, A}. A better way to 
implement the infinite horizon MPC is to solve 
the following multiobjective optimization: 
Primary objective. Steady-state error minimiza- 
tion: 

min max 
+I+~LJ~ [e, ,.._, ek+y+,,_,~sox...xo 

{$+q+n--llkh t71) 

q+n-I 

yk+q+n-Ilk =Yk + c ez+j-IUktj-1. (72) 

j=l 

Secondary objective. Dynamic error minimiza- 
tion: 

min max 
duktfi, [e,.....e, +‘,+,,_l]EOX_..XO 

k+q+n-2 q-1 

C Y2k+l(k + ,go AU:+j}. (73) 
I=1 

In the above, the degrees of freedom left after 
the steady-state error minimization are to be 
adjusted to minimize the dynamic error. 
Whether or not such degrees of freedom remain 
depends on the uncertainty parameterization and 
the number of input moves calculated. 

Under the feedback control defined by the 
above, the input and output can be shown to 
converge to zero when (i) the initial condition is 
such that the constraint (64) on the integrated 
input remains inactive, and (ii) the sign of the 
steady-state gain (which is defined as &? = 

EY=l hi.&+;-,, not gr = cy=, hi,&) iS the same for 
all possible parameter values at all time steps. 
The proof for q = 1 is given in the Appendix. We 
also discuss in the Appendix how the proof 
extends to the general choice of q. (See also Lee 
and Cooley (1997) for a similar proof for 
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state-space systems.) The formal proof for the 
general case is quite technical, and is not 
presented due to the space limitation. 

Finally, we note that use of other norms are 
possible. For instance, replacing 2-norm with 
l-norm in the above results in a linear- 
programming problem. 

3.3. Derivation of conventional MPC from min- 
max MPC 

Let us further assume that 0 is an ellipsoid 
given by: 

o~{e:(~W(e-9)(~,crl,e~~}. (74) 

In the above, 6 represents the center of the 
ellipsoid and corresponds to the nominal value 
of the parameter vector. W E S?“x” is in the 
form of 

Wediag L,...,$ VT, 
fll n1 1 

where V is an II X m orthogonal matrix, i.e. its m 
columns are made up of n-dimensional orthogo- 
nal vectors of unit length. v, E sn, the Ith 
column of V, defines the Ith principal axis of the 
ellipsoid, the corresponding radius of which is 
represented by Us. Note that m, the number of 
orthogonal vectors, can be smaller than n in the 
case when the parameter set belongs to a lower 
dimensional subspace. 

With this parameter set, we can derive the 
following upper bound for the worst-case error: 

max 
[Or ,..., B,*, ,]E@X...X@ 

jC++> 

52 &+,+ 
1 

max 
10, . . . . . B~_,_,]t@x...x@ 

[ 
,* (ek+j-, - d)Tuk+j-l]2). 

%2 
1 
l ;+,+ max 

[.3, . B~*,_,]EQX...XO & j=, 

(75) 

[co,+,-, - ~~~w~(wT~-~u,,,-,~*], (77) 

wvk+,-, - @II: II~-~~~+,-,II:]}, 

where 

(78) 

(79) 

Ek+/=yk +$ BTU,+,-, (8’3 

and 
( WT)-’ = diag [a,, . . . , u,,,]V’. (81) 

The upper bound (76) can be interpreted as 
splitting the worst-case error (75) into two terms: 
the first term l *(k + I) represents the error when 
8 . . . ) &+l all take on their nominal value of 
$‘and the second term is the worst-case error 
due to the deviation of 8 from a. In going from 
(75) to (76) and from (76) to (77) we used the 
property 

(82) 

In addition, in going from (77) to (78), we used 
the Schwarz inequality (i.e. (xTy)’ 5 ((x 11: (1 y II:). 

Similarly, we can derive a lower bound for 
(75): 

max 
[e, ,.... ex+,_,]tOx...xO 

v”k+llk, (83) 

max 
[e, ,..., e~+,_,]EOX...XO 

[,$ (ek+j-l - a)Tuk+,-l]2}j (84) 

2 c;+,+ I max i [ok ,..., B~+,_,]SOX...XO j=l 

[(ek+j-I - 8)TwT(wT)-1u,+,-,]2}, (85) 

= (,:+I+,$ I~(WT)~luk+j-I(/~)~ (86) 

In going from (83) to (84) and from (84) to (85) 
we used 

(87) 

when all ai terms have same sign. This inequality 
can be used, since ek+l and (ek+j-1 - 8)TUk+j-I, 

15 j % 1 all have the same sign for the worst-case 
choice of f$,..., ok+,_, E 0, because 0 is a 
norm-bounded set centered on d. In addition, 
(86), which can be proven to be an upper bound 
of (85) using the Schwarz inequality, can be 
proven to be equal to (85) by showing that the 
upper bound is always achievable for a certain 
choice Of &, . . . , ok+(_l E 0. 

Minimization of the open-loop worst-case 
error based on the upper bound (79) is: 

‘ii I~(wr)-‘uk+j-l/l:)~ (88) 
/=I 

In the above, the first term in (88) can be 
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interpreted as the squared sum of nominal error 
(i.e. the error when assuming 8 = 8) while the 
second and third terms can be viewed as input 
penalty terms. The third term, which arises from 
the model error, has the nice physical interpreta- 
tion that various orthogonal linear combinations 
of the input sequence U,+,_, (i.e. u~Uk+,_,, 
15 i 5 n) are penalized in proportion to cji, 
representing the largest possible deviation of 8 
from the nominal parameter in the respective 
direction. The coefficient I multiplying the 
penalty term for lJk+,_, arises because of the 

upper bound approximation (77) and the 
integrating nature of the model. 

In the same manner, minimization based on 
the lower bound (86) becomes 

+ i II(WT)-‘Uk+j-, II:}. (89) 
j=l 

It is noteworthy that the lower bound has the 
same structure as the upper bound. The only 
difference is that the coefficient multiplying the 
penalty term for Uk+j_, is smaller. This implies 
that minimization of the upper bound will 
generally lead to more cautious control than that 
of the lower bound. Another noteworthy point is 
that the lower bound turns out to be exactly the 
sum of the variances of the future output errors 
(plus the input weighting term E$‘=, AL+_,) 
when the parameter vector is modeled as a 
Gaussian variable with covariance (W’W))‘, 
and the future decision variables are treated as 
deterministic variables (see Lee and Cooley, 
1995). 

Given the fact that minimizations of the upper 
and lower bounds are both interpreted as 
minimization of nominal error plus appropriate 
penalty terms for finite input sequences Uk+j-, 
and differ only by a scalar multiplying the 
weighting matrix, it is reasonable to minimize a 
function obtained by linearly interpolating the 
two functions. The interpolation parameter can 
be left as an adjustable parameter. This is 
admittedly ad hoc, because it assumes that the 
true objective function is well approximated by 
linearly interpolating the upper and lower 
bounds, but it adds to the tunability of the 
algorithm. The interpolation leads to 

min 2 
1C 

y, + i TIC?~U~+~_, 
1 

2 

,‘//A t 0, ,= , 
+ A&-l 

j=l 

+ [ll+ Cl - S>l i II(wT)-‘uk+j-l II:}. t90) 
j=l 

In the above, 6 is the interpolation parameter 

the value of which ranges from 0 to 1. Choosing 
5 = 0 is equivalent to the lower-bound minimiza- 
tion, while choosing 5 = 1 results in the 
upper-bound minimization. It should be intui- 
tively clear that, in general, increasing 5 
increases the robustness, but slows down the 
closed-loop speed. Hence, one could start out 
with the most conservative setting of 5 = 1 and 
decrease it slowly to reach a desirable response. 
For convenience of exposition, we will refer to 
(90) as suboptimal min-max predictive control 
(SMMPC) in the examples. The minimization is 
a linear least-squares problem in the uncon- 
strained case and is a QP in the constrained case. 
The expressions for the hessian and gradient of 
the QP can be found in the Appendix. 
Compared to conventional MPC, the main 
difference is that the penalty term for 
current/future input decision variables is affected 
by past inputs through the nondiagonal weight- 
ing matrix. 

These ideas generalize straightforwardly to 
multivariable systems. For example, for n,,, X n,, 

systems, (90) becomes 

min 
“Uk E ii, 

(2 i {((YJ* + i BXJ~+i-,~~ 
/=I i=l j=l 

+ [iY/ + C1 - r>l ,i ll(WT)-lUk+j-l II:) 

q-1 

+ c u:+,Ruk+, . (91) 
j=O 1 

In the above, Uk+,_, = [u:+,_, . . . u~+~_,,]~, the 
ai terms are vectors of dimension n . II,,, and 
the (WT)-’ terms are also matrices of m X 

(n . n,,). Having multiple inputs only increases 
the dimension of the FIR input space and the 
parameter space. The error for each output is 
then calculated independently and added to- 
gether to make up the objective function in (91). 

3.4. More examples 
Example 2. SISO case with x-norm-bounded 

model set. We study the following example given 
by Zheng and Morari (1993): 

Yk =Yk-1 + aluk-I +a2ukp2, 

Figure 3 compares the performance of 
OLWOFC, CLWORHC, and OLWOFC-II, 
when y, = 1 (step disturbance in the output at 
t = 0) and a, = 0.75 and a2 = 0.5. We see that all 
algorithms work well for the nominal plant, 
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Fig. 3. Comparisons of open-loop and closed-loop algorithms 
with plant parameters a, = 0.75 and a, = 0.5 for Example 2: 
(-) OLWOFC-II; $----iC, CLWORHC; (. . .) 

particularly OLWOFC. Figure 4 gives the same 
comparison for the case when a, = 1 and 
a2 = 0.4. In the latter case, the OLWOFC 
algorithm becomes unstable, while the other 
algorithms remain stable. 

Example 3. SISO case with 2-norm-bounded 
model set. The purpose of this example is to 
compare the performance of different subop- 
timal algorithms. For this purpose, we consider 
the following model with 2-norm bounded 
parameter vector: 

yk =ykpl + aluk-I + a2uk&2, 

[ a, 
a, 

- - 0.5 1.0 1 5 1. (93) 

2 

Again, we set y,, = 1, meaning we have a step 
disturbance starting at t = 0. Both the prediction 

oulpclrs 
3 

I 

-1 I 
0 1 2 3 4 A B 7 8 9 IO 

htmltphtedvariawI 
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Fig. 4. Comparisons of open-loop and closed-loop algorithms 
with plant parameters a, = 1 and az = 0.4 for Example 2: 
(-) OLWOFC-II; $b$c, CLWORHC; (. . . .) 

horizon p and the control move horizon q are 
chosen to be 2, and the input penalty factor A is 
set to 0. We compare the simulated responses 
obtained with OLWOFC-II, and with SMMPC 
for three different values of the interpolation 
parameter (5 = 0,0.65,1). [ = 1 corresponds to 
the upper-bound minimization of (88), while 
I= 0 corresponds to the lower-bound minimiza- 
tion of (89). As it is difficult to find the 
worst-case scenario analytically, we gridded the 
boundary of the ellipsoid with 100 points and 
tried simulations for all these points. The worst 
case turned out to be al = 0.9812 and a2 = 
0.8992. Figure 5 presents the simulation results 
for the worst case. The level of performance for 
SMMPC is close to that of computationally more 
expensive OLWOFC-II algorithm. We also see 
that input moves become less aggressive as 5 is 
increased. This is in accordance with our 
expectation. 

Example 4. MIS0 high-purity distillation con- 
trol problem. The purpose of this example is to 
test the SMMPC algorithm further. We consider 
a control problem derived from an ideal 
distillation column studied by Skogestad et al. 
(1988). The control configuration we use consists 
of two manipulated variables (the reflux flow and 
vapor boilup) and one controlled variable (the 
overhead composition). We assume the real 
system is represented by 

Y(S) = & [0.878(1 + S,) 0.864(1 + S,)] 

x L(s) 
[ 1 V(s) ’ (94) 

where y represents the controlled output, L and 
V represent the two manipulated inputs, and S, 
and a2 represent relative errors in the input 
channels. With 

61 - 

[I y’ <l 

62 -’ - 
Y2 2 

we allow maximum relative errors of y, and y2 
in the effect of manipulated inputs uI and u2, 
respectively. We can approximate the above 
model as an integrating MA system in the form 
of (58) (with sample time of 1 minute, 30 
coefficients were judged to be sufficient): 

1 uk-I 1 

, (95) 
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Fig. 5. Simulation results of various suboptimal algorithms with plant parameters a , = 0.9812 and a2 = 0.8992 for Example 3: (a) 
OLWOFC-II: (b) SMMPC with 5 = 1: (c) SMMPC with I= 0.65: (d) SMMPC with C = 0. 

where 

fi = [k,, h1.2 J&J h,., . . . . . . Ll., ~30.21T, 

Although the parameter vector 0 is 60- 
dimensional, the ellipsoid 0 lies within a 
two-dimensional subspace, defined by two 
orthonormal vectors u, and u2 (i.e. the first and 
second columns of V). The radius of the 
ellipsoid in the u, direction is l/(y, /h/l). 

(96) 
tuning parameters were chosen as follows: the 
prediction horizon p = 30, control move horizon 
4 = 10 and input penalty A = 10 for both inputs. 
Figure 6 shows the results obtained with various 
values of y, and y2. Figure 6(a) gives the 

1 

= YI Im O 

L 1 
response of the inputs and the output when 
y, = y2 = 0.2828. The actual plant error used for 

1 
VT, simulation was (a,, S,) = (0.2, -0.2) which lies 

0 - 
Y2 IhI 

on the boundary of the ellipsoid. We observe 
that the output follows the setpoint change 

where R,= [h,., &, . . . R,,,]’ is a vector con- smoothly. Both inputs are utilized equally for 
taining the impulse response coefficients for the control, because both have the same level of 
Ith input channel. lh,l is the 2-norm of h,, which uncertainty. Figure 6(b) shows the response 
divides all the elements of h, for normalization. when (JJ,, y2) = (0.2828,0.4243), with the actual 

We applied the SMMPC algorithm to the 
above system. Here we chose 5 = 1. Other 
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Fig. 6. Simulation results obtained with SMMPC algorithm for various sizes of the ellipsoid and correspondingly chosen 
input errors for Example 4. (a) (y,, yz) = (0.2828, 0.2828) (6,) SJ = (0.2, -0.2). (b) (vi, ye) = (0.2828, 0.4243). (61, 6,) = 
(0.2, -0.3): (----) (y,, yz)= (0.2830, 1.2718) (S,, 6,)=(0.2, -0.9). (c) (y,, y,)=(O.4243, 0.2828). (a,, a,)= (0.3. -0.2): 

(----) (y,, yz)= (1.2718, 0.2830). (6,. S,) = (0.9, -0.2). 

plant error given by (a,, 6,) = (0.2, -0.3). This 
time the first input is utilized much more because 
the controller knows that it has a lower level of 
uncertainty. This point becomes more dramatic 
when we choose (r,, y2) = (0.2830, -1.2718) 
with the actual plant error given by (6,) 6,) = 
(0.2, -0.9) as shown in the same figure. Figure 

6(c) shows an opposite trend when the 
uncertainty level for u, is increased instead. 

4. CONCLUSION 

In this paper we have presented different 
formulations of the ‘worst-case’ predictive 
control algorithms under a set membership 
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uncertainty description and quadratic perfor- 
mance criterion. We have shown that, when the 
uncertainty is assumed to be time-invariant, the 
open-loop control assumption can lead to poor 
closed-loop performance and instability. The 
main reason for this is that the worst-case 
parameter can change from one optimization to 
another due to the feedback update (which is not 
accounted for in the open-loop formulation). We 
presented two alternatives. The first is a 
closed-loop min-max control formulation given 
as a dynamic program. The second is the 
open-loop formulation, but with uncertainty that 
is allowed to vary from one time step to next. 
We proved that both algorithms deliver robust 
stability under infinite prediction horizon. We 
also derived a computationally attractive subop- 
timal algorithm for a particular class of systems 
(i.e. FIR systems). 

The conclusion drawn here for the min-max 
approach applies similarly to stochastic systems 
in which model parameters are random 
variables rather than bounded deterministic 
variables. The practice of treating parameters as 
random variables has been popular in the 
adaptive control field, as it tends to simplify the 
mathematics involved in comparison to the 
set-based approach. In this spirit, one could 
envisage the two approaches being merged. For 
example, the stochastic parameter model can be 
used to define a performance objective and 
additional constraints can be imposed, which 
guarantee closed-loop stability for all plants of 
probability higher than a certain level. 
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APPENDIX 

Attractivity of FIR systems with an integrator under 
OL WOFC-II 

Here we prove that, under the receding horizon control 
based on (71)-(73), input and output converge to zero for all 
possible parameter values under certain assumptions. We 
present the proof for the case of 9 = 1 only. For this case, 
only the primary optimization (71) is relevant. 

First, we prove that the optimal cost for the primary 
optimization (71) converges. 

Theorem A.l. For the system (58)-(60) with the constraints 
(63) and (64), the optimal cost for (71) with 9 = 1 converges 
as k + ~0 under feedback control uk = I@, where ut is the 
optimal value of uk for (71)-(73). 

Proof Let 

V, = min Jk g max y:+,+ ? I (A.1) 
“k [.9,. .,B~+,,-,]‘OX. x0 

where 
II - I 

yk++ = Yk + c G,,Uk t, 64.2) 
,=O 
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Let uz be the minimizing value for uk in the above 
optimization. Then, 

V, = min max 
‘Jk [e, . . e~+,,_,]eex...xo I%++], 

2 max 
[e,, ,..-.. .9~+,,-,]‘8X...XO G:+“lk]> 

with 8, = t9k and Us = ~2, 

= max 
lo,,, ,.... B&,,,_,]‘BX...XB IZ+?++J 

(A.3) 

(A.4) 

(A.3) 

(A.6) 

= max 
le,, ,..... B~+,,leox...xo {9:+n+llk+l]. with uk+, = 0, (A.7) 

2 min 

since uk+, =I:: fearibley:‘.‘il*“]’ 

<ax+, le,, I..... 8~,,,l~8X ..xo (AS) 

= vk+, (A.9) 

Since V,,, - V, 50 and V, is bounded below by zero, it is a 
converging sequence. 0 

Next we show that the cost actually converges to zero 
under some mild assumptions. For this, we define 

g;= i hi&+,-,. (A.lO) 
,=I 

Note that the feasible sequence gr is determined by 
19~ E 0, . , Sr, +,,-, E 0. The assumptions we make are: 

Assumption A.l. For all k, gp is nonzero and has the same 
sign for all feasible values of hl,k, . . , !I,,,~+,,- ,, as defined 
by [a,‘, . . .a k+,,_I] E 0 x . . . x 0. Hence, the feasible set is 
a closed interval that does not include the origin. 

Assumption A.2. The initial condition is such that the 
constraint on integrated vk of (64) remains inactive. 

Theorem A.3. For system (58)-(60). under Assumptions A. 1 
and A.2. the optimal cost for (71) with 9 = 1 converges to 
zero and yk + 0 and vk + 0 as k + r: under feedback control 
V/( = Il,*. 

Proof A formal proof requires several lengthy and technical 
arguments. Instead, we present an informal proof, which 
captures the essence of the idea. 

In the proof of Theorem A.l, we showed that V, is a 
converging sequence and V,,, 5 Jk+, l,,l+,=,b 5 V,. Based on 
this, we first show that the optimal cost cannot converge to a 
value other than zero. For this, assume that the optimal cost 
remained at a constant value for at least n time steps (i.e. 
v,_,,,,=...= V,). Given the uniqueness of the optimal 
solution (which can be proven for the particular optimiza- 
tion), this implies that the optima1 input remained zero for at 
least n time steps (u~-,~+, = , uI = 0). Then, 

Pk+,,+llk+l =y/l+r +g,;+Illr+,, (A.ll) 

where piV+, is a parameter that occupies the feasible set for 
gr+,. With Us+, =O, Jk+, = y: +, Suppose yli +, # 0. Then, 

= 2Yk+,&Z+!. (A.12) 

The above derivative is nonzero and has the same sign for all 
feasible values of &$‘+, (Assumption A.l). In addition, the 
feasible set for Us+, is a closed set that includes the origin as 
an interior point (Assumption A.2). This means that 11~ +, = 0 
is not an optima1 solution and the cost can be lowered from 
y:,,. In fact, there exists 0 < l 5 1 such that V,,, 5 
(1 - l )y:+,. This proves that the cost must converge to zero. 

Next, we show that, once the optimal cost converges to 
zero, the input and output sequences must converge to zero. 
Suppose that V, = 0. Then, ilk+, = 0 gives Jk+, = V, = 0. 
Given the uniqueness of the optimal solution, ttk +, = 0 is the 
optimal solution for the optimization at r = k + 1. By 

induction, the optima1 input remains zero for all future time 
steps. In addition, the output must converge to zero at most 
in n steps. 0 

The proof for the genera1 choice of 9 is somewhat lengthy 
and technical. The proof is complicated by the fact that the 
secondary optimization is performed whenever the optimal 
solution for primary optimization is not unique. In the case 
that only the steady-state error is minimized (either there 
exists no extra degree of freedom or only the inputs are 
minimized in the secondary optimization), the above proof 
extends straightforwardly. 

Derivation of expressions of hessian and gradient for SMMPC 
algorithm 

Equation (90) is more conveniently written as 

x Il(~T)~-‘~~+,-,ll:]. (A.13) 

Note that (WT)-’ = [V . diag (l/o,, , l/a,,)]-’ = diag (a,, 
( c,,)VT. To facilitate the further exposition, we rewrite 

(A.13) using some new notation: 

[ 

,>-,+I 

+A&_,+ (l-[)(p-I+l)+ c (j+r-1) 
,=I 1 

x 2 [u,up(Bp”“‘v,_, + B,qJ]i (A.14) 
,=I 

where V,_, = [uk_,.. . .u~_~+,]~, and ,y and B, are 
matrices chosen such that 

U,+,_, = Bp,,‘V k-1 -+-B&c. 

Let us also define 

%)) = “yk f Xpas’Vk_, + X%,, 

g; = JI1P”“‘V k-l f J@l&, 
where 

“&past 

r Vp(l - 6) + 6X::‘=, j(C:‘=, u,uTB$“‘) 
= v\/(p - l)(l - 5) + c c:‘=*j (Z:‘=, u,uTBpar’) 1 

(A.15) 

(A.16) 

(A.17) 

~P(~-~)+C~:‘=,~(Z:‘=,~,U;‘B,) 

_& = - l)(l - 5) + t E:‘=2i (Z:‘=, fl,uT&) 

1 
(A.18) 

L (~(1_5)+5~:‘=,,jC:‘=,~,u7B,,) A,>x,, 

Then. (A.14) can be simplified as 

n$n {( %;)T’81 + ( &?i)T8$ + %:A?&}, (A.19) 
!. 

where A = diag {A,. , A}. Multiplying out the above (after 
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substituting (A.16) and (A.17)) and dropping the constant 
term, one obtains 

above minimization can be written analytically as 

min %z 
%I ( 

w 
> 

3k= -(X%+SJu+A)-’ 

3, 
x {XTq + (%z’~%-“~~~ + ATAP”“‘)Vk_,}. (A.21) 

+ xrq + (W-Ye~as’ + “MT.4PS’)V~_, 

b 
T3 

gradient 

(A 20) 
* . In the presence of linear inequality constraints on 3,, (arising 

from input rate/magnitude limits), quadratic programming 
In the absence of any constraint on “21,, the solution to the can be used to find the optimal solution. 


