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Introduction

Practically any physical, chemical, or biological system
can exhibit rhythmic oscillatory activity, at least when
the conditions are right. Winfree (2001) reviews the ubiq-
uity of oscillations in nature, ranging from auto-catalytic
chemical reactions to pacemaker cells in the heart, to an-
imal gates, and to circadian rhythms. When coupled,
even weakly, oscillators interact via adjustment of their
phases, i.e., their timing, often leading to synchroniza-
tion. In this chapter we review the most important con-
cepts needed to study and understand the dynamics of
coupled oscillators.

From mathematical point of view, an oscillator is a
dynamical system

ẋ = f(x) , x ∈ Rm , (1)

having a limit cycle attractor – periodic orbit γ ⊂ Rm.
Its period is the minimal T > 0 such that

γ(t) = γ(t + T ) for any t,

and its frequency is Ω = 2π/T . Let x(0) = x0 ∈ γ be
an arbitrary point on the attractor, then the state of the
system, x(t), is uniquely defined by its phase ϑ ∈ S1

relative to x0, where S1 is the unit circle.
Throughout this chapter we assume that the periodic

orbit γ is exponentially stable, which implies normal hy-
perbolicity. In this case, there is a continuous transfor-
mation Θ : U → S1 defined in a neighborhood U ⊃ γ
such that ϑ(t) = Θ(x(t)) for any trajectory in U . That
is, Θ maps solutions of (1) to solutions of

ϑ̇ = Ω . (2)

Such a transformation removes the amplitude but saves
the phase of oscillation.

Accordingly, there is a continuous transformation that
maps solutions of the weakly coupled network of n oscil-
lators

ẋi = fi(xi) + εgi(x1, . . . , xn, ε) , ε ¿ 1 , (3)
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FIG. 1: 2-torus and its representation on the square.

onto solutions of the phase system

ϑ̇i = Ωi + εhi(ϑ1, . . . , ϑn, ε) , ϑi ∈ S1 , (4)

which is easier to study the collective properties of (3).
The oscillators are said to be frequency locked when

(4) has a stable periodic orbit ϑ(t) = (ϑ1(t), . . . , ϑn(t))
on the n-torus Tn, as in Fig. 1a. The rotation vec-
tor or winding ratio of the orbit is the set of integers
q1 : q2 : · · · : qn such that ϑ1 makes q1 rotations while
ϑ2 makes q2 rotations, etc., as in the 2:3 frequency lock-
ing in Fig. 1a. The oscillators are entrained when they
are 1:1:· · · :1 frequency locked. The oscillators are phase
locked when there is an (n − 1) × n integer matrix K
having linearly independent rows such that Kϑ(t) =
const. For example, the two oscillators in Fig. 1b are
phase locked with K = (2, 3), while those in Fig. 1c are
not. The oscillators are synchronized when they are en-
trained and phase locked. Synchronization is in-phase
when ϑ1(t) = · · · = ϑn(t) and out-of-phase otherwise.
Two oscillators are said to be synchronized anti-phase
when ϑ1(t)−ϑ2(t) = π. Frequency locking without phase
locking, as in Fig. 1c, is called phase trapping. The rela-
tionship between all these definitions is depicted in Fig. 2.
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FIG. 2: Various degrees of locking of oscillators.
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FIG. 3: Isochrons of Andronov-Hopf oscillator (ż = (1+i)z−
z|z|2, z ∈ C) and van der Pol oscillator (ẋ = x−x3−y, ẏ = x).

Phase resetting

An exponentially stable periodic orbit is a normally hy-
perbolic invariant manifold, hence its sufficiently small
neighborhood, U , is invariantly foliated by stable sub-
manifolds (Guckenheimer 1975) illustrated in Fig. 3. The
manifolds represent points having equal phases, and for
this reason, they are called isochrons (from Greek iso
meaning equal and chronos meaning time).

The geometry of isochrons determines how the oscil-
lators react to perturbations. For example, the pulse in
Fig. 3, right, moves the trajectory from one isochron to
another, thereby changing its phase. The magnitude of
the phase shift depends on the amplitude and the exact
timing of the stimulus relative to the phase of oscillation
ϑ. Stimulating the oscillator at different phases, one can
measure the phase transition curve (Winfree 1980)

ϑnew = PTC (ϑold)

and the phase resetting curve

PRC (ϑ) = PTC (ϑ)−ϑ (shift=new phase–old phase) .

Positive (negative) values of the PRC correspond to
phase advances (delays). PRCs are convenient when the
phase shifts are small, so that they can be magnified and
clearly seen, as in Fig. 4. PTCs are convenient when the
phase shifts are large and comparable with the period of
oscillation.

In Fig. 5 we depict phase portraits of the Andronov-
Hopf oscillator receiving pulses of magnitude 0.5 (left)
and 1.5 (right). Notice the drastic difference between
the corresponding PRCs or PTCs. Winfree (2001) dis-
tinguishes two cases:

• Type 1 (weak) resetting results in continuous PRCs
and PTCs with mean slope 1.

• Type 0 (strong) resetting results in discontinuous
PRCs and PTCs with mean slope 0.

The discontinuity of Type 0 PRC in Fig. 5 is a topo-
logical property that cannot be removed by reallocating
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FIG. 4: Examples of phase response curves (PRC) of the
oscillators in Fig. 3. PRC1(ϑ) and PRC2(ϑ) correspond to
horizontal (along the first variable) and vertical (along the
second variable) pulses with amplitudes 0.2. An example of
oscillation is plotted as a dotted curve in each subplot (not to
scale).
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FIG. 5: Types of phase resetting of the Andronov-Hopf oscil-
lator in Fig. 3.

the initial point x0 that corresponds to zero phase. The
discontinuity stems from the fact that the shifted image
of the limit cycle (dashed circle) goes beyond the central
equilibrium at which the phase is not defined.

The stroboscopic mapping of S1 to itself, called
Poincare phase map,

ϑk+1 = PTC (ϑk) , (5)
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FIG. 6: Solutions Q = (Q1, Q2) to the adjoint problem (7)
for oscillators in Fig. 3.

describes the response of an oscillator to a T -periodic
pulse train. Here, ϑk denotes the phase of oscillation
when the kth input pulse arrives. Its fixed points corre-
spond to synchronized solutions, and its periodic orbits
correspond to phase locked states.

Weak Coupling

Now consider dynamical systems of the form

ẋ = f(x) + εs(t) , (6)

describing periodic oscillators, ẋ = f(x), forced by a
weak time-depended input εs(t), e.g., from other oscil-
lators in a network. Let Θ(x) denote the phase of oscil-
lation at point x ∈ U , so that the map Θ : U → S1 is
constant along each isochron. This mapping transforms
(6) into the phase model

ϑ̇ = Ω + εQ(ϑ) · s(t) ,

with function Q(ϑ), illustrated in Fig. 6, satisfying three
equivalent conditions:

• Winfree: Q(ϑ) is normalized PRC to infinitesimal
pulsed perturbations.

• Kuramoto: Q(ϑ) = grad Θ(x).

• Malkin: Q is the solution to the adjoint problem

Q̇ = −{Df(γ(t))}>Q , (7)

with the normalization Q(t) ·f(γ(t)) = Ω for any t.

Function Q(ϑ) can be found analytically in a few simple
cases:

• A nonlinear phase oscillator ẋ = f(x) with x ∈ S1

and f > 0 has Q(ϑ) = Ω/f(γ(ϑ)).

• A system near saddle-node on invariant circle bi-
furcation has Q(ϑ) proportional to 1− cosϑ.

• A system near supercritical Andronov-Hopf bifur-
cation has Q(ϑ) proportional to sin(ϑ − ψ), where
ψ ∈ S1 is a constant phase shift.

Other interesting cases, including homoclinic, relaxation,
and bursting oscillators are considered by Izhikevich
(2005).

Treating s(t) in (6) as the input from the network, we
can transform weakly coupled oscillators

ẋi = fi(xi) + ε

si(t)︷ ︸︸ ︷
n∑

j=1

gij(xi, xj) , xi ∈ Rm , (8)

to the phase model

ϑ̇i = Ωi + εQi(ϑi) ·

si(t)︷ ︸︸ ︷
n∑

j=1

gij(xi(ϑi), xj(ϑj)) , (9)

having the form (4) with hi = Qi

∑
gij , or the form

ϑ̇i = Ωi + ε

n∑

j=1

hij(ϑi, ϑj) ,

where hij = Qigij . Introducing phase deviation variables
ϑi = Ωit + ϕi, we transform this system into the form

ϕ̇i = ε

n∑

j=1

hij(Ωit + ϕi, Ωjt + ϕj) ,

which can be averaged to

ϕ̇i = ε
n∑

j=1

Hij(ϕi − ϕj) , (10)

with the functions

Hij(χ) = lim
T→∞

1
T

∫ T

0

hij(Ωit, Ωjt− χ) dt (11)

describing the interaction between oscillators. To sum-
marize, we transformed weakly coupled system (8) into
the phase model (10) with H given by (11) and each
Q being the solution to the adjoint problem (7). This
constitutes the Malkin theorem for weakly coupled oscil-
lators (Hoppensteadt and Izhikevich 1997, Theorem 9.2).

Existence of one equilibrium of the phase model (10)
implies the existence of the entire circular family of equi-
libria, since translation of all ϕi by a constant phase shift
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FIG. 7: Solid curves: Functions Hij(χ) defined by (11) corre-
sponding to the gap-junction input g(xi, xj) = (xj1 − xi1, 0).
Dashed curves: Functions H(χ) = Hji(χ)−Hij(−χ). Param-
eters as in Fig. 3.

does not change the phase differences ϕi − ϕj and hence
the form of (10). This family corresponds to a limit cycle
of (8), on which all oscillators have equal frequencies and
constant phase shifts, i.e., they are synchronized, possi-
bly out-of-phase.

We say that two oscillators, i and j, have resonant (or
commensurable) frequencies when the ratio Ωi/Ωj is a
rational number, e.g., it is p/q for some integer p and
q. They are non-resonant when the ratio is an irrational
number. In this case the function Hij defined above is
constant regardless of the details of the oscillatory dy-
namics or the details of the coupling. That is, dynamic
of two coupled non-resonant oscillators is described by
an uncoupled phase model. Apparently, such oscillators
do not interact; that is, the phase of one of them cannot
change the phase of the other one even on the long time
scale of order 1/ε.

Synchronization

Consider (8) with n = 2, describing two mutually cou-
pled oscillators. Let us introduce “slow” time τ = εt and
rewrite the corresponding phase model (10) in the form

ϕ′1 = ω1 + H12(ϕ1 − ϕ2)
ϕ′2 = ω2 + H21(ϕ2 − ϕ1) ,

where ′ = d/dτ and ωi = Hii(0) is the frequency devia-
tion from the natural oscillation, i = 1, 2. Let χ = ϕ2−ϕ1

denote the phase difference between the oscillators, then

χ′ = ω + H(χ) , (12)

where

ω = ω2 − ω1 and H(χ) = H21(χ)−H12(−χ) ,

is the frequency mismatch and the anti-symmetric part
of the coupling, respectively, illustrated in Fig. 7, dashed
curves. A stable equilibrium of (12) corresponds to a
stable limit cycle of the phase model.

All equilibria of (12) are solutions to H(χ) = −ω, and
they are intersections of the horizontal line −ω with the
graph of H. They are stable if the slope of the graph is

negative at the intersection. If oscillators are identical,
then H(χ) is an odd function (i.e., H(−χ) = −H(χ)),
and χ = 0 and χ = π are always equilibria, possibly
unstable, corresponding to the in-phase and anti-phase
synchronized solutions. The in-phase synchronization of
gap-junction coupled oscillators in Fig. 7 is stable because
the slope of H (dashed curves) is negative at χ = 0. The
max and min values of the function H determine the
tolerance of the network to the frequency mismatch ω,
since there are no equilibria outside this range.

Now consider a network of n > 2 weakly coupled os-
cillators (8). To determine the existence and stability
of synchronized states in the network, we need to study
equilibria of the corresponding phase model (10). Vector
φ = (φ1, . . . , φn) is an equilibrium of (10) when

0 = ωi +
n∑

j 6=1

Hij(φi − φj) (for all i) . (13)

It is stable when all eigenvalues of the linearization ma-
trix (Jacobian) at φ have negative real parts, except one
zero eigenvalue corresponding to the eigenvector along
the circular family of equilibria (φ plus a phase shift is a
solution of (13) too since the phase shifts φj −φi are not
affected).

In general, determining the stability of equilibria is a
difficult problem. Ermentrout (1992) found a simple suf-
ficient condition. If

• aij = H ′
ij(φi − φj) ≤ 0, and

• the directed graph defined by the matrix a = (aij)
is connected, (i.e., each oscillator is influenced, pos-
sibly indirectly, by every other oscillator),

then the equilibrium φ is neutrally stable, and the cor-
responding limit cycle x(t + φ) of (8) is asymptotically
stable.

Another sufficient condition was found by Hoppen-
steadt and Izhikevich (1997). If system (10) satisfies

• ω1 = · · · = ωn = ω (identical frequencies)

• Hij(−χ) = −Hji(χ) (pair-wise odd coupling)

for all i and j, then the network dynamics converge to
a limit cycle. On the cycle, all oscillators have equal
frequencies 1 + εω and constant phase deviations.

The proof follows from the observation that (10) is a
gradient system in the rotating coordinates ϕ = ωτ + φ
with the energy function

E(φ) = −1
2

n∑

i=1

n∑

j=1

Rij(φi − φj) ,

where

Rij(χ) =
∫ χ

0

Hij(s) ds .

One can check that dE(φ)/dτ = −∑
(φ′i)

2 ≤ 0 along the
trajectories of (12) with equality only at equilibria.
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FIG. 8: Kuramoto synchronization index (15) describes the
degree of coherence in the network (14).

Mean-Field Approximations

Let us represent the phase model (10) in the form

ϕ′i = ωi +
n∑

j 6=i

Hij(ϕi − ϕj)

where ′ = d/dτ , τ εt is the slow time, and ωi = Hii(0) are
random frequency deviations. Collective dynamics of this
system can be analyzed in the limit n →∞. We illustrate
the theory using the special case, H(χ) = − sin χ, known
as the Kuramoto (1984) model

ϕ′i = ωi +
K

n

n∑

j=1

sin(ϕj − ϕi) , ϕi ∈ [0, 2π] , (14)

where K > 0 is the coupling strength and the factor 1/n
ensures that the model behaves well as n → ∞. The
complex-valued sum of all phases,

reiψ =
1
n

n∑

j=1

eiϕj , (Kuramoto synchronization index)

(15)
describes the degree of synchronization in the network.
Apparently, the in-phase synchronized state ϕ1 = · · · =
ϕn corresponds to r = 1 with ψ being the population
phase. In contrast, the incoherent state with all ϕi hav-
ing different values randomly distributed on the unit cir-
cle, corresponds to r ≈ 0. Intermediate values of r corre-
spond to a partially synchronized or coherent state, de-
picted in Fig. 8. Some phases are synchronized forming
a cluster, while others roam around the circle.

Multiplying both sides of (15) by e−iϕi and consider-
ing only the imaginary parts, we can rewrite (14) in the
equivalent form

ϕ′i = ωi + Kr sin(ψ − ϕi)

that emphasizes the mean-filed character of interactions
between the oscillators: They all are pulled into the syn-
chronized cluster (ϕi → ψ) with the effective strength
proportional to the cluster size r. This pull is offset by
the random frequency deviations ωi that pull away from
the cluster.

Let us assume that omegas are distributed randomly
around 0 with a symmetrical probability density function
g(ω), e.g., Gaussian. Kuramoto has shown that in the
limit n →∞, the cluster size r obeys the self-consistency
equation

r = rK

∫ +π/2

−π/2

g(Kr sin ϕ) cos2 ϕdϕ . (16)

Notice that r = 0, corresponding to the incoherent state,
is always a solution of this equation. When the coupling
strength K is greater than a certain critical value,

Kc =
2

πg(0)
,

an additional, nontrivial solution r > 0 appears, which
corresponds to a partially synchronized state. Expand-
ing g in a Taylor series, one get the scaling r =√

16(K −Kc)/(−g′′(0)πK4
c ). Thus, the stronger the

coupling K relative to the random distribution of fre-
quencies, the more oscillators synchronize into a coher-
ent cluster. The issue of stability of incoherent and par-
tially synchronized states is discussed by Strogatz (2000).
Other generalizations of the Kuramoto model are re-
viewed by Acebron et al. (2005).
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